Intriguing Properties of Randomly Weighted Networks: Generalizing While Learning Next to Nothing
نویسندگان
چکیده
Training deep neural networks results in strong learned representations that show good generalization capabilities. In most cases, training involves iterative modification of all weights inside the network via back-propagation. In Extreme Learning Machines, it has been suggested to set the first layer of a network to fixed random values instead of learning it. In this paper, we propose to take this approach a step further and fix almost all layers of a deep convolutional neural network, allowing only a small portion of the weights to be learned. As our experiments show, fixing even the majority of the parameters of the network often results in performance which is on par with the performance of learning all of them. The implications of this intriguing property of deep neural networks are discussed and we suggest ways to harness it to create more robust representations.
منابع مشابه
Creating Dynamic Sub-Route to Control Congestion Based on Learning Automata Technique in Mobile Ad Hoc Networks
Ad hoc mobile networks have dynamic topology with no central management. Because of the high mobility of nodes, the network topology may change constantly, so creating a routing with high reliability is one of the major challenges of these networks .In the proposed framework first, by finding directions to the destination and calculating the value of the rout the combination of this value with ...
متن کاملTrust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic
Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...
متن کاملCreating Dynamic Sub-Route to Control Congestion Based on Learning Automata Technique in Mobile Ad Hoc Networks
Ad hoc mobile networks have dynamic topology with no central management. Because of the high mobility of nodes, the network topology may change constantly, so creating a routing with high reliability is one of the major challenges of these networks .In the proposed framework first, by finding directions to the destination and calculating the value of the rout the combination of this value with ...
متن کاملNetwork Resource Management for Improving Users Quality of experience in Software Defined Network by Weighted Fuzzy Petri-NetMethod
The rapid rise in popularity of multimedia applications, such as VoIP, IPTV and Video Conferencing, intensifies the need to consider resource management for user satisfaction. Furthermore, improving Quality of Experience (QoE) in Software Defined Networks (SDNs) services is one of the important issues to be addressed by provisioning optimum resource management. In this paper, resource allocatio...
متن کاملNetwork Resource Management for Improving Users Quality of experience in Software Defined Network by Weighted Fuzzy Petri-NetMethod
The rapid rise in popularity of multimedia applications, such as VoIP, IPTV and Video Conferencing, intensifies the need to consider resource management for user satisfaction. Furthermore, improving Quality of Experience (QoE) in Software Defined Networks (SDNs) services is one of the important issues to be addressed by provisioning optimum resource management. In this paper, resource allocatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.00844 شماره
صفحات -
تاریخ انتشار 2018